Asymmetric dependence patterns in financial time series
نویسندگان
چکیده
منابع مشابه
Forbidden patterns in financial time series.
The existence of forbidden patterns, i.e., certain missing sequences in a given time series, is a recently proposed instrument of potential application in the study of time series. Forbidden patterns are related to the permutation entropy, which has the basic properties of classic chaos indicators, such as Lyapunov exponent or Kolmogorov entropy, thus allowing to separate deterministic (usually...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملDeterminism in Financial Time Series
The attractive possibility that financial indices may be chaotic has been the subject of much study. In this paper we address two specific questions: “Masked by stochasticity, do financial data exhibit deterministic nonlinearity?”, and “If so, so what?”. We examine daily returns from three financial indicators: the Dow Jones Industrial Average, the London gold fixings, and the USD-JPY exchange ...
متن کاملCharacterization of Financial Time Series
This paper provides an exhaustive review of the literature on the characterization of financial time series. A stylized fact is a term in economics used to refer to empirical findings that are so consistent across markets that they are accepted as truth. Financial time series may be characterized by the following stylized facts. The autocorrelation of returns is largely insignificant. The distr...
متن کاملCross-Correlation Dynamics in Financial Time Series
The dynamics of the equal-time cross-correlation matrix of multivariate financial time series is explored by examination of the eigenvalue spectrum over sliding time windows. Empirical results for the S&P 500 and the Dow Jones Euro Stoxx 50 indices reveal that the dynamics of the small eigenvalues of the cross-correlation matrix, over these time windows, oppose those of the largest eigenvalue. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Journal of Finance
سال: 2009
ISSN: 1351-847X,1466-4364
DOI: 10.1080/13518470902853368